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Abstract

In this paper we discuss our research in developing gen-
eral and systematic methods for intrusion detection. The
key ideas are to use data mining techniques to discover
consistent and useful patterns of system features that de-
scribe program and user behavior, and use the set of rel-
evant system features to compute (inductively learned)
classifiers that can recognize anomalies and known in-
trusions. Using experiments on the sendmail system call
data and the network tcpdump data, we demonstrate that
we can construct concise and accurate classifiers to de-
tect anomalies. We provide an overview on two general
data mining algorithms that we have implemented: the
association rules algorithm and the frequent episodes al-
gorithm. These algorithms can be used to compute the
intra- and inter- audit record patterns, which are essential
in describing program or user behavior. The discovered
patterns can guide the audit data gathering process and
facilitate feature selection. To meet the challenges of
both efficient learning (mining) and real-time detection,
we propose an agent-based architecture for intrusion de-
tection systems where the learning agents continuously
compute and provide the updated (detection) models to
the detection agents.

1 Introduction

As network-based computer systems play increasingly
vital roles in modern society, they have become the tar-
gets of our enemies and criminals. Therefore, we need
to find the best ways possible to protect our systems.

The security of a computer system is compromised when
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an intrusion takes place. An intrusion can be defined
[HLMS90] as “any set of actions that attempt to com-
promise the integrity, confidentiality or availability of
a resource”. Intrusion prevention techniques, such as
user authentication (e.g. using passwords or biometrics),
avoiding programming errors, and information protec-
tion (e.g., encryption) have been used to protect com-
puter systems as a first line of defense. Intrusion preven-
tion alone is not sufficient because as systems become
ever more complex, there are always exploitable weak-
ness in the systems due to design and programming er-
rors, or various “socially engineered” penetration tech-
niques. For example, after it was first reported many
years ago, exploitable “buffer overflow” still exists in
some recent system software due to programming er-
rors. The policies that balance convenience versus strict
control of a system and information access also make it
impossible for an operational system to be completely
secure.

Intrusion detection is therefore needed as another wall
to protect computer systems. The elements central to
intrusion detection are: resources to be protected in a
target system, i.e., user accounts, file systems, system
kernels, etc; models that characterize the “normal” or
“legitimate” behavior of these resources; techniques that
compare the actual system activities with the established
models, and identify those that are “abnormal” or “intru-
sive”.

Many researchers have proposed and implemented dif-
ferent models which define different measures of system
behavior, with an ad hoc presumption that normalcy and
anomaly (or illegitimacy) will be accurately manifested
in the chosen set of system features that are modeled and
measured. Intrusion detection techniques can be catego-
rized into misuse detection, which uses patterns of well-
known attacks or weak spots of the system to identify
intrusions; and anomaly detection, which tries to deter-
mine whether deviation from the established normal us-
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age patterns can be flagged as intrusions.

Misuse detection systems, for example [KS95] and
STAT [IKP95], encode and match the sequence of “sig-
nature actions” (e.g., change the ownership of a file) of
known intrusion scenarios. The main shortcomings of
such systems are: known intrusion patterns have to be
hand-coded into the system; they are unable to detect
any future (unknown) intrusions that have no matched
patterns stored in the system.

Anomaly  detection  (sub)systems, such as
IDES [LTGt92], establish normal usage patterns
(profiles) using statistical measures on system features,
for example, the CPU and 1/O activities by a particular
user or program. The main difficulties of these systems
are: intuition and experience is relied upon in selecting
the system features, which can vary greatly among
different computing environments; some intrusions can
only be detected by studying the sequential interrelation
between events because each event alone may fit the
profiles.

Our research aims to eliminate, as much as possible, the
manual and ad-hoc elements from the process of build-
ing an intrusion detection system. We take a data-centric
point of view and consider intrusion detection as a data
analysis process. Anomaly detection is about finding the
normal usage patterns from the audit data, whereas mis-
use detection is about encoding and matching the intru-
sion patterns using the audit data. The central theme of
our approach is to apply data mining techniques to in-
trusion detection. Data mining generally refers to the
process of (automatically) extracting models from large
stores of data [FPSS96]. The recent rapid development
in data mining has made available a wide variety of algo-
rithms, drawn from the fields of statistics, pattern recog-
nition, machine learning, and database. Several types of
algorithms are particularly relevant to our research:

Classification: maps a data item into one of several pre-
defined categories. These algorithms normally out-
put “classifiers”, for example, in the form of deci-
sion trees or rules. An ideal application in intrusion
detection will be to gather sufficient “normal” and
“abnormal” audit data for a user or a program, then
apply a classification algorithm to learn a classifier
that will determine (future) audit data as belonging
to the normal class or the abnormal class;

Link analysis: determines relations between fields in
the database. Finding out the correlations in audit
data will provide insight for selecting the right set
of system features for intrusion detection;

Sequence analysis: models sequential patterns. These

algorithms can help us understand what (time-
based) sequence of audit events are frequently en-
countered together. These frequent event patterns
are important elements of the behavior profile of a
user or program.

We are developing a systematic framework for design-
ing, developing and evaluating intrusion detection sys-
tems. Specifically, the framework consists of a set of
environment-independent guidelines and programs that
can assist a system administrator or security officer to

o select appropriate system features from audit data
to build models for intrusion detection;

e architect a hierarchical detector system from com-
ponent detectors;

e update and deploy new detection systems as
needed.

The key advantage of our approach is that it can auto-
matically generate concise and accurate detection mod-
els from large amount of audit data. The methodology
itself is general and mechanical, and therefore can be
used to build intrusion detection systems for a wide va-
riety of computing environments.

The rest of the paper is organized as follows: Sec-
tion 2 describes our experiments in building classifica-
tion models for sendmail and network traffic. Section 3
presents the association rules and frequent episodes al-
gorithms that can be used to compute a set of patterns
from audit data. Section 4 briefly highlights the archi-
tecture of our proposed intrusion detection system. Sec-
tion 5 outlines our future research plans.

2 Building Classification Models

In this section we describe in detail our experiments
in constructing classification models for anomaly de-
tection. The first set of experiments, first reported in
[LSC97], is on the sendmail system call data, and the
second is on the network tcpdump data.

2.1 Experiments on sendmail Data

There have been a lot of attacks on computer systems
that are carried out as exploitations of the design and



programming errors in privileged programs, those that
can run as root. For example, a flaw in the finger dae-
mon allows the attacker to use “buffer overflow” to trick
the program to execute his malicious code. Recent re-
search efforts by Ko et al. [KFL94] and Forrest et al.
[FHSL96] attempted to build intrusion detection systems
that monitor the execution of privileged programs and
detect the attacks on their vulnerabilities. Forrest et al.
discovered that the short sequences of system calls made
by a program during its normal executions are very con-
sistent, yet different from the sequences of its abnormal
(exploited) executions as well as the executions of other
programs. Therefore a database containing these nor-
mal sequences can be used as the “self” definition of the
normal behavior of a program, and as the basis to de-
tect anomalies. Their findings motivated us to search for
simple and accurate intrusion detection models.

Stephanie Forrest provided us with a set of traces of the
sendmail program used in her experiments [FHSL96].
We applied machine learning techniques to produce
classifiers that can distinguish the exploits from the nor-
mal runs.

2.1.1 The sendmail System Call Traces

The procedure of generating the sendmail traces were
detailed in [FHSL96]. Briefly, each file of the trace
data has two columns of integers, the first is the process
ids and the second is the system call “numbers”. These
numbers are indices into a lookup table of system call
names. For example, the number “5” represents system
call open. The set of traces include:

Normal traces: a trace of the sendmail daemon and a
concatenation of several invocations of the send-
mail program;

Abnormal traces: 3 traces of the sscp (sunsendmailcp)
attacks, 2 traces of the syslog-remote attacks, 2
traces of the syslog-local attacks, 2 traces of the de-
code attacks, 1 trace of the sm5x attack and 1 trace
of the sm565a attack. These are the traces of (var-
ious kinds of) abnormal runs of the sendmail pro-
gram.

2.1.2 Learning to Classify System Call Sequences

In order for a machine learning program to learn the clas-
sification models of the “normal” and “abnormal” sys-
tem call sequences, we need to supply it with a set of

Class Labels
“normal”

System Call Sequences (length 7)
4266664 138 66

555459105104 “abnormal”

Table 1: Pre-labeled System Call Sequences of Length 7

training data containing pre-labeled “normal” and “ab-
normal” sequences. We use a sliding window to scan
the normal traces and create a list of unique sequences
of system calls. We call this list the “normal” list. Next,
we scan each of the intrusion traces. For each sequence
of system calls, we first look it up in the normal list. If
an exact match can be found then the sequence is labeled
as “normal”. Otherwise it is labeled as “abnormal” (note
that the data gathering process described in [FHSL96]
ensured that the normal traces include nearly all possible
“normal” short sequences of system calls, as new runs of
sendmail failed to generate new sequences). Needless
to say all sequences in the normal traces are labeled as
“normal”. See Table 1 for an example of the labeled se-
quences. It should be noted that an intrusion trace con-
tains many normal sequences in addition to the abnormal
sequences since the illegal activities only occur in some
places within a trace.

We applied RIPPER [Coh95], a rule learning program,
to our training data. The following learning tasks were
formulated to induce the rule sets for normal and abnor-
mal system call sequences:

e Each record has n positional attributes, py, pa, ...,
Pn, One for each of the system calls in a sequence of
length n; plus a class label, “normal” or *“abnormal”

e The training data is composed of normal sequences
taken from 80% of the normal traces, plus the ab-
normal sequences from 2 traces of the sscp attacks,
1 trace of the syslog-local attack, and 1 trace of the
syslog-remote attack

e The testing data includes both normal and abnormal
traces not used in the training data.

RIPPER outputs a set of if-then rules for the “minority”
classes, and a default “true” rule for the remaining class.
The following exemplar RIPPER rules were generated
from the system call data:

normal:- po = 104, p; = 112. [meaning: if py
is 104 (vtimes) and p; is 112 (vtrace) then
the sequence is “normal”]



normal:- pg = 19, p; = 105. [meaning: if pg
is 19 (Iseek) and p; is 105 (sigvec) then the
sequence is “normal”]

abnormal:- true. [meaning: if none of the
above, the sequence is “abnormal’’]

These RIPPER rules can be used to predict whether a se-
quence is “abnormal” or “normal”. But what the intru-
sion detection system needs to know is whether the trace
being analyzed is an intrusion or not. We use the fol-
lowing post-processing scheme to detect whether a given
trace is an intrusion based on the RIPPER predictions of
its constituent sequences:

1. Use asliding window of length 2/ +1, e.g., 7, 9, 11,
13, etc., and a sliding (shift) step of [, to scan the
predictions made by the RIPPER rules on system
call sequences.

2. For each of the (length 21 + 1) regions of RIPPER
predictions generated in Step 1, if more than [ pre-
dictions are “abnormal” then the current region of
predictions is an “abnormal” region. (Note that / is
an input parameter).

3. If the percentage of abnormal regions is above a
threshold value, say 2%, then the trace is an intru-
sion.

This scheme is an attempt to filter out the spurious pre-
diction errors. The intuition behind this scheme is that
when an intrusion actually occurs, the majority of adja-
cent system call sequences are abnormal; whereas the
prediction errors tend to be isolated and sparse. In
[FHSL96], the percentage of the mismatched sequences
(out of the total number of matches (lookups) performed
for the trace) is used to distinguish normal from abnor-
mal. The “mismatched” sequences are the abnormal se-
quences in our context. Our scheme is different in that
we look for abnormal regions that contain more abnor-
mal sequences than the normal ones, and calculate the
percentage of abnormal regions (out of the total number
of regions). Our scheme is more sensitive to the tempo-
ral information, and is less sensitive to noise (errors).

RIPPER only outputs rules for the “minority” class. For
example, in our experiments, if the training data has
fewer abnormal sequences than the normal ones, the
output RIPPER rules can be used to identify abnormal
sequences, and the default (everything else) prediction
is normal. We conjectured that a set of specific rules
for normal sequences can be used as the “identity” of
a program, and thus can be used to detect any known

and unknown intrusions (anomaly intrusion detection).
Whereas having only the rules for abnormal sequences
only gives us the capability to identify known intrusions
(misuse intrusion detection).

% abn. % abn. in experiment

Traces [FHSL96] | A B C D

sscp-1 5.2 419 | 32.2 | 40.0 | 33.1
sscp-2 5.2 404 | 304 | 376 | 33.3
sscp-3 5.2 40.4 | 304 | 37.6 | 33.3
syslog-r-1 5.1 30.8 | 21.2 | 30.3 | 21.9
syslog-r-2 1.7 27.1 | 15.6 | 26.8 | 16.5
syslog-I-1 4.0 16.7 | 11.1 | 17.0 | 13.0
syslog-1-2 5.3 19.9 | 159 | 19.8 | 15.9
decode-1 0.3 47 | 21 | 31 | 21
decode-2 0.3 44 | 20 | 25 | 2.2
sm565a 0.6 117 80 | 1.1 | 1.0
Sm5x 2.7 177 | 65 | 50 | 3.0
sendmail 0 10 | 01 | 0.2 | 03

Table 2: Comparing Detection of Anomalies. The col-
umn [FHSL96] is the percentage of the abnormal se-
quences of the traces. Columns A, B, C, and D are
the percentages of abnormal regions (as measured by
the post-processing scheme) of the traces. sendmail
is the 20% normal traces not used in the training data.
Traces in bold were included in the training data, the
other traces were used as testing data only.

We compare the results of the following experiments that
have different distributions of abnormal versus normal
sequences in the training data:

Experiment A: 46% normal and 54% abnormal, se-
quence length is 11;

Experiment B: 46% normal and 54% abnormal, se-
quence length is 7;

Experiment C: 46% abnormal and 54% normal, se-
quence length is 11;

Experiment D: 46% abnormal and 54% normal, se-
quence length is 7.

Table 2 shows the results of using the classifiers from
these experiments to analyze the traces. We report here
the percentage of abnormal regions (as measured by our
post-processing scheme) of each trace, and compare our
results with Forrest et al., as reported in [FHSL96].
From Table 2, we can see that in general, intrusion traces
generate much larger percentages of abnormal regions
than the normal traces. We call these measured percent-
ages the “scores” of the traces. In order to establish a
threshold score for identifying intrusion traces, it is de-
sirable that there is a sufficiently large gap between the



scores of the normal sendmail traces and the low-end
scores of the intrusion traces. Comparing experiments
that used the same sequence length, we observe that such
agapin A, 3.4, is larger than the gap in C, 0.9; and 1.9
in B is larger than 0.7 in D. The RIPPER rules from
experiments A and B describe the patterns of the nor-
mal sequences. Here the results show that these rules
can be used to identify the intrusion traces, including
those not seen in the training data, namely, the decode
traces, the sm565a and sm5x traces. This confirms our
conjecture that rules for normal patterns can be used for
anomaly detection. The RIPPER rules from experiments
C and D specify the patterns of abnormal sequences in
the intrusion traces included in the training data. The
results indicate that these rules are very capable of de-
tecting the intrusion traces of the “known” types (those
seen in the training data), namely, the sscp-3 trace, the
syslog-remote-2 trace and the syslog-local-2 trace. But
comparing with the rules from A and B, the rules in C
and D perform poorly on intrusion traces of “unknown”
types. This confirms our conjecture that rules for abnor-
mal patterns are good for misuse intrusion detection, but
may not be as effective in detecting future (“unknown™)
intrusions.

The results from Forrest et al. showed that their method
required a very low threshold in order to correctly detect
the decode and smb565a intrusions. While the results
here show that our approach generated much stronger
“signals” of anomalies from the intrusion traces, it
should be noted that their method used all of the normal
traces but not any of the intrusion traces in training.

2.1.3 Learning to Predict System Calls

Unlike the experiments in Section 2.1.2 which required
abnormal traces in the training data, here we wanted to
study how to compute an anomaly detector given just the
normal traces. We conducted experiments to learn the
(normal) correlation among system calls: the nth system
calls or the middle system calls in (normal) sequences of
length n.

The learning tasks were formulated as follows:

e Each record has n — 1 positional attributes, p1, pa,

.., Pn—1, €ach being a system call; plus a class la-

bel, the system call of the nth position or the middle
position

e The training data is composed of (normal) se-
quences taken from 80% of the normal sendmail
traces

e The testing data is the traces not included in the
training data, namely, the remaining 20% of the
normal sendmail traces and all the intrusion traces.

RIPPER outputs rules in the following form:

38 :- p3 = 40, py = 4. [meaning: if p3 is 40
(Istat) and py is 4 (write), then the 7th system
call is 38 (stat).]

5:- true. [meaning: if none of the above, then
the 7th system calls is 5 (open).]

Each of these RIPPER rules has some “confidence” in-
formation: the number of matched examples (records
that conform to the rule) and the number of unmatched
examples (records that are in conflict with the rule) in the
training data. For example, the rule for “38 (stat)” cov-
ers 12 matched examples and 0 unmatched examples.
We measure the confidence value of a rule as the num-
ber of matched examples divided by the sum of matched
and unmatched examples. These rules can be used to an-
alyze a trace by examining each sequence of the trace. If
a violation occurs (the actual system call is not the same
as predicted by the rule), the “score” of the trace is in-
cremented by 100 times the confidence of the violated
rule. For example, if a sequence in the trace has p; = 40
and ps = 4, but p; = 44 instead of 38, the total score
of the trace is incremented by 100 since the confidence
value of this violated rule is 1. The averaged score (by
the total number of sequences) of the trace is then used
to decide whether an intrusion has occurred.

Table 3 shows the results of the following experiments:

Experiment A: predict the 11th system call;

Experiment B: predict the middle system call in a se-
quence of length 7;

Experiment C: predict the middle system call in a se-
quence of length 11;

Experiment D: predict the 7th system call.

We can see from Table 3 that the RIPPER rules from
experiments A and B are effective because the gap be-
tween the score of normal sendmail and the low-end
scores of intrusion traces, 3.9, and 3.3 respectively, are
large enough. However, the rules from C and D perform
poorly. Since C predicts the middle system call of a se-
quence of length 11 and D predicts the 7th system call,
we reason that the training data (the normal traces) has
no stable patterns for the 6th or 7th position in system
call sequences.



averaged score of violations

Traces Exp. A | Exp. B | Exp. C | Exp. D
sscp-1 24.1 135 14.3 24.7
sscp-2 235 13.6 13.9 244
sscp-3 235 13.6 13.9 24.4

syslog-r-1 19.3 115 13.9 24.0
syslog-r-2 15.9 8.4 10.9 23.0

syslog-1-1 134 6.1 7.2 19.0
syslog-1-2 15.2 8.0 9.0 20.2
decode-1 9.4 3.9 24 11.3

decode-2 9.6 42 2.8 115
sm565a 14.4 8.1 9.4 20.6
sm5x 17.2 8.2 10.1 18.0
sendmail 5.7 0.6 1.2 12.6

Table 3: Detecting Anomalies using Predicted System
Calls. Columns A, B, C, and D are the averaged scores
of violations of the traces. sendmail is the 20% normal
traces not used in the training data. None of the intrusion
traces was used in training.

2.1.4 Discussion

Our experiments showed that the normal behavior of a
program execution can be established and used to de-
tect its anomalous usage. This confirms the results of
other related work in anomaly detection. The weakness
of the model in [FHSL96] may be that the recorded (rote
learned) normal sequence database may be too specific
as it contains ~ 1, 500 entries. Here we show that a ma-
chine learning program, RIPPER, was able to generalize
the system call sequence information, from 80% of the
normal sequences, to a set of concise and accurate rules
(the rule sets have 200 to 280 rules, and each rule has
2 or 3 attribute tests). We demonstrated that these rules
were able to identify unseen intrusion traces as well as
normal traces.

We need to search for a more predictive classification
model so that the anomaly detector has higher confi-
dence in flagging intrusions. Improvement in accuracy
can come from adding more features, rather than just
the system calls, into the models of program execution.
For example, the directories and the names of the files
touched by a program can be used. In [Fra94], it is re-
ported that as the number of features increases from 1 to
3, the classification error rate of their network intrusion
detection system decreases dramatically. Furthermore,
the error rate stabilizes after the size of the feature set
reaches 4, the optimal size in their experiments. Many
operating systems provide auditing utilities, such as the
BSM audit of Solaris, that can be configured to collect

abundant information (with many features) of the activ-
ities in a host system. From the audit trails, informa-
tion about a process (program) or a user can then be
extracted. The challenge now is to efficiently compute
accurate patterns of programs and users from the audit
data.

A key assumption in using a learning algorithm for
anomaly detection (and to some degree, misuse detec-
tion) is that the training data is nearly “complete” with
regard to all possible “normal” behavior of a program
or user. Otherwise, the learned detection model can not
confidently classify or label an unmatched data as “ab-
normal” since it can just be an unseen “normal” data.
For example, the experiments in Section 2.1.3 used 80%
of “normal” system call sequences; whereas the experi-
ments in Section 2.1.2 actually required all “normal” se-
quences in order to pre-label the “abnormal” sequences
to create the training data. During the audit data gath-
ering process, we want to ensure that as much different
normal behavior as possible is captured. We first need
to have a simple and incremental (continuously learn-
ing) summary measure of an audit trail so that we can
update this measure as each new audit trail is processed,
and can stop the audit process when the measure stabi-
lizes. In Section 3, we propose to use the frequent intra-
and inter- audit record patterns as the summary measure
of an audit trail, and describe the algorithms to compute
these patterns.

2.2 Experiments on tcpdump Data

There are two approaches for network intrusion detec-
tion: one is to analyze the audit data on each host of the
network and correlate the evidence from the hosts. The
other is to monitor the network traffic directly using a
packet capturing program such as tcpdump [JLM89]. In
this section, we describe how classifiers can be induced
from tcpdump data to distinguish network attacks from
normal traffic.

2.2.1 The tcpdump Data

We obtained a set of tcpdump data, available via
http at “iris.cs.uml.edu:8080/network.html”, that is
part of an Information Exploration Shootout (see
“http://iris.cs.uml.edu:8080"). tcpdump was executed on
the gateway that connects the enterprise LAN and the
external networks. It captured the headers (not the user
data) of the network packets that passed by the network



interface of the gateway. Network traffic between the
enterprise LAN and external networks, as well as the
broadcast packets within the LAN were therefore col-
lected. For the purposes of the shootout, filters were
used so that tcpdump only collected Internet Transmis-
sion Control Protocol (TCP) and Internet User Datagram
Protocol (UDP) packets. The data set consists of 3 runs
of tcpdump on generated network intrusions® and one
tcpdump run on normal network traffic (with no intru-
sions). The output of each tcpdump run is in a sepa-
rate file. The traffic volume (number of network connec-
tions) of these runs are about the same. Our experiments
focused on building an anomaly detection model from
the normal dataset.

Since tcpdump output is not intended specifically for se-
curity purposes, we had to go through multiple iterations
of data pre-processing to extract meaningful features and
measures. We studied TCP/IP and its security related
problems, for example [Ste84, Pax97, ABH*96, Pax98,
Bel89, PV98], for guidelines on the protocols and the
important features that characterize a connection.

2.2.2 Data Pre-processing

We developed a script to scan each tcpdump data file
and extract the “connection” level information about the
network traffic. For each TCP connection, the script pro-
cesses packets between the two ports of the participating
hosts, and:

o checks whether 3-way handshake has been properly
followed to establish the connection. The follow-
ing errors are recorded: connection rejected, con-
nection attempted but not established (the initiating
host never receives a SYN acknowledgment), and
unwanted SYN acknowledgment received (no con-
nection request, a SYN packet, was sent first),

e monitors each data packet and ACK packet, keeps
a number of counters in order to calculate these
statistics of the connection: resent rate, wrong re-
sent rate, duplicate ACK rate, hole rate, wrong
(data packet) size rate, (data) bytes sent in each di-
rection, percentage of data packet, and percentage
of control packet, and

e watches how connection is terminated: normal
(both sides properly send and receive FINSs), abort
(one host sends RST to terminate, and all data pack-

INote that, to this date, the organizers of the shootout have not
provided us with information, i.e., the times, targets, and actions, of
these network intrusions.

ets are properly ACKed), half closed (only one host
sends FIN), and disconnected.

Since UDP is connectionless (no connection state), we
simply treat each packet as a connection.

A connection record, in preparation of data mining, now
has the following fields (features): start time, duration,
participating hosts, ports, the statistics of the connection
(e.g., bytes sent in each direction, resent rate, etc.), flag
(“normal” or one of the recorded connection/termination
errors), and protocol (TCP or UDP). From the ports, we
know whether the connection is to a well-known service,
e.g., http (port 80), or a user application.

We call the host that initiates the connection, i.e., the
one that sends the first SYN, as the source, and the other
as the destination. Depending on the direction from the
source to the destination, a connection is in one of the
three types: out-going - from the LAN to the exter-
nal networks; in-coming - from the external networks
to the LAN; and inter-LAN - within the LAN. Taking
the topologies of the network into consideration is im-
portant in network intrusion detection. Intuitively, intru-
sions (which come from outside) may first exhibit some
abnormal patterns (e.g., penetration attempts) in the in-
coming connections, and subsequently in the inter-LAN
(e.g., doing damage to the LAN) and/or the out-going
(e.g., stealing/uploading data) connections. Analyzing
these types of connections and constructing correspond-
ing detection models separately may improve detection
accuracy.

2.2.3 Experiments and Results

For each type (direction) of the connections, we formu-
lated the classification experiments as the following:

e Each (connection) record uses the destination ser-
vice (port) as the class label, and all the other con-
nection features as attributes;

e The training data is 80% of the connections from
the normal tcpdump data file, while the test data
includes the remaining 20% from the normal tcp-
dump data file, and all the connections from the 3
tcpdump data files marked as having embedded at-
tacks;

o 5-fold cross validation evaluation is reported here.
The process (training and testing) is repeated 5
times, each time using a different 80% of the nor-
mal data as the training data (and accordingly the



% misclassification (by traffic type)
Data out-going | in-coming | inter-LAN
normal 3.91% 4.68% 4%
intrusionl 3.81% 6.76% 22.65%
intrusion2 | 4.76% 7.47% 8.7%
intrusion3 3.71% 13.7% 7.86%

Table 4: Misclassification Rate on Normal and Intru-
sion Data. Separate classifiers were trained and tested
on connection data of each traffic type. “normal” is the
20% data set aside from the training data. No intrusion
data was used for training.

different remaining 20% of the normal data as part
of the test data), and the averaged accuracy of the
classifiers from the 5 runs is reported.

We again applied RIPPER to the connection data. The
resulting classifier characterizes the normal patterns of
each service in terms of the connection features. When
using the classifier on the testing data, the percentage of
misclassifications on each tcpdump data set is reported.
Here a misclassification is the situation where the the
classifier predicts a destination service (according to the
connection features) that is different from the actual.
This misclassification rate should be very low for nor-
mal connection data and high for intrusion data. The
intuition behind this classification model is straightfor-
ward: when intrusions take place, the features (charac-
teristics) of connections to certain services, for example,
ftp, are different from the normal traffic patterns (of the
same service).

The results from the first round of experiments, as shown
in Table 4, were not very good: the differences in the
misclassification rates of the normal and intrusion data
were small, except for the inter-LAN traffic of some in-
trusions.

We then redesigned our set of features by adding some
continuous and intensity measures into each connection
record:

e Examining all connections in the past n seconds,
and counting the number of: connection establish-
ment errors (e.g., “connection rejected”), all other
types of errors (e.g., “disconnected”), connections
to designated system services (e.g., ftp), connec-
tions to user applications, and connections to the
same service as the current connection;

o Calculate for the past n seconds, the per-connection
average duration and data bytes (on both directions)
of all connections, and the same averages of con-

% misclassification (by traffic type)
Data out-going | in-coming | inter-LAN
normal 0.88% 0.31% 1.43%
intrusionl 2.54% 27.371% 20.48%
intrusion2 3.04% 27.42% 5.63%
intrusion3 2.32% 42.20% 6.80%

Table 5: Using Temporal-Statistical Measures to Im-
prove Classification Accuracy. Here the time interval is
30 seconds.
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Figure 1: Effects of Window Sizes on Misclassification
Rates

nections to the same service.

These additional temporal-statistical features provide
additional information of the network activity from a
continuous perspective, and provide more insight into
anomalies. For example, a low rate of error due to inno-
cent attempts and network glitches in a short time span is
expected, but an excess beyond the (averaged) norm in-
dicates anomalous activity. Table 5 shows the improve-
ment of adding these features. Here, using a time inter-
val of 30 seconds (i.e., n = 30s), we see that the mis-
classification rates on the intrusion data are much higher
than the normal data, especially for the in-coming traffic.
The RIPPER rule set (the classifier) has just 9 rules and
25 conditions. 